翻訳と辞書 |
Chabauty topology : ウィキペディア英語版 | Chabauty topology In mathematics, the Chabauty topology is a certain topological structure introduced in 1950 by Claude Chabauty, on the set of all closed subgroups of a locally compact group ''G''. The intuitive idea may be seen in the case of the set of all lattices in a Euclidean space ''E''. There these are only certain of the closed subgroups: others can be found by in a sense taking limiting cases or degenerating a certain sequence of lattices. One can find linear subspaces or discrete groups that are lattices in a subspace, depending on how one takes a limit. This phenomenon suggests that the set of all closed subgroups carries a useful topology. This topology can be derived from the Vietoris topology construction, a topological structure on all non-empty subsets of a space. More precisely, it is an adaptation of the Fell topology construction, which itself derives from the Vietoris topology concept. ==References==
* Claude Chabauty, ''Limite d'ensembles et géométrie des nombres''. Bulletin de la Société Mathématique de France, 78 (1950), p. 143-151
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Chabauty topology」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|